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“If we use, to achieve our purposes, a mechanical agency with whose operations 
we cannot interfere effectively…we had better be quite sure that the purpose put 

into the machine is the purpose which we really desire.”

– Norbert Wiener (1960)



CS391R: Robot Learning (Fall 2022) 3

“Ultimately, we are in the business of building AI systems that integrate well with 
humans and human society. And if we don’t take that as a fundamental tenet of 
the field, I think we are potentially in trouble and that is a perspective I wish was 

more pervasive throughout artificial intelligence, generally.”

– Dylan Hadfield-Menell (2019)
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Reward Engineering is Difficult

❖ Humans are exceptionally good at mis-stating 
their goals
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Reward Engineering is Difficult

❖ Humans are exceptionally good at mis-stating 
their goals

❖ Humans have a hard time understanding the 
full implications of their goals

❖ Given success in the previous two, there is no 
guarantee a robot optimizing on a reward 
shares the same value as a human being
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Value Alignment Problem

❖ These examples highlight the value alignment problem
❖ Each example focuses on specific rewards while missing the true value

➢ Maximizing points rather than winning the race
➢ Maximizing personal wealth rather than happiness
➢ Maximizing amount of paper clips rather than the overall welfare of everyone

❖ Reinforcement Learning problems are not made in vacuum. 
➢ They are a part of a human-robot relationship
➢ Simply encoding rewards leads to these errors. 
➢ Instead, we should train robots to learn the underlying value and desire of their human 

counterparts
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Problem Setting
❖ Cooperative Inverse Reinforcement Learning is an attempt to formalize the value alignment problem 

within AI.

❖  CIRL formalizes this problem as a two player game between a Human (H) and a Robot (R).

❖ This game is a partial information game in which one player, the human, knows the reward function, 

while the robot, does not know the reward.

❖ The robots payoff is the human’s actual reward.

❖ The optimal solution to this problem maximizes the human’s reward

❖ This solution involves teaching by the human and learning by the robot.
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Inverse Reinforcement Learning

❖ Attempt to determine the reward function being optimized by observing an 
actor’s behavior in the environment.

❖ Key assumption is that the observed actor is behaving optimally
➢ Hadfield-Mennell dubs this ‘Demonstration by Expert’ or DBE

❖ Key difference is in CIRL, the optimal solution includes teaching behaviors

Hidden Goal MDP

❖ The goal is a hidden part of the state. 𝜃 encodes a particular goal state.
❖ Here 𝐑 helps 𝐇, but 𝐇 is treated as part of the environment rather than a 

secondary agent.
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Optimal Teaching

❖ The objective is to optimize efficient learning in an agent
❖ Optimal teaching emerges as a property of CIRL, rather than being the goal

Principal-Agent Models

❖ Economic framework where a principal specifies incentives to an agent to 
maximize the principal’s profit. 
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CIRL Formulation
Definition 1: A cooperative inverse reinforcement learning (CIRL) game 
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The CIRL Game

❖ The game begins by sampling the initial state
➢ Note 𝐇 observes 𝜃, while 𝐑 does not.

❖ At each time step, 𝐇 and 𝐑 choose their 
actions

❖ Both actors receive an award
𝑟𝑡 = 𝑅(𝑠𝑡,𝑎

𝐇,𝑎𝐑; 𝜃)

❖ Behavior is defined as a policy pair: (𝜋𝐇, 𝜋𝐑)

❖ The optimal joint policy is one that maximizes value, which is the expected 
sum of discounted rewards

Fig Source: Malik, Palaniappan, Fisac, Hadfield-Mennell, Russell & 
Dragan, 2018
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Computing Optimal Policy Pairs

❖ The optimal policy pair is representational of 𝚮 and 𝐑 coordinating perfectly.
❖ This is an example of a decentralized-partially observed MDP (Dec-POMDP)

➢ Dec-POMDPs are NEXP-complete, which is generally regarded as a bad thing

❖ CIRLs can reduce this complexity
➢ The structure of CIRL implies 𝐇’s initial observation of 𝜃 is private information
➢ This allows a reduction from Dec-POMDP to a coordination-POMDP

❖ Theorem: Let 𝑀 = CIRL game with state 𝒮 and reward space 𝜭. There exists 
a POMDP 𝑀𝑐 with state space 𝒮𝑐 such that |𝒮𝑐| = |𝒮| ∙ |𝜭| and for any policy 
pair in 𝑀, there is a policy in 𝑀𝑐 that achieves the same sum of discounted 
awards
➢ Therefore, there exists an optimal policy pair that only depends on the current state and 𝐑’s 

belief.
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Apprenticeship Learning

❖ Apprenticeship CIRL is a subclass of CIRL which adds the concept of turns 
and phases to the general CIRL problem.
➢ Learning phase - 𝐇 demonstrates the task to teach 𝐑
➢ Deployment phase - 𝐑 becomes the only actor, working on it’s belief of 𝜃.

❖ In the deployment phase, the optimal policy for 𝐑 to maximizes the reward in 
the MDP induced by the mean 𝜃 from 𝐑’s belief.

❖ This formulation is used to reason about DBE 
➢ There exists ACIRL games where the best response for 𝐇 to 𝜋𝐑 violates the expert 

demonstrator assumption. 
➢ If br(𝜋) is the best response to 𝜋, then br(br(𝜋𝐄)) ≠ 𝜋𝐄

❖ We should expect users to present optimizations for fast learning rather than 
demonstrations that maximize reward
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Generating Instructive Demonstrations

❖ The expert demonstration assumption is broken, so how should 𝐇 act?
❖ IRL combined with the mean 𝜃 from 𝐑’s belief, the optimal 𝜋𝐑 computes a 

policy that matches the observed feature counts from the learning phase.
➢ Note this is under the DBE assumption

❖ This implies we can compute a demonstration trajectory 𝜏𝐇.
❖ We begin by calculating feature counts 𝐑 would observe in expectation of 𝜃. 
❖ If 𝜙𝜃 is the expected feature counts, then

❖ This difference is termed as regret
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Experiment One Setup

❖ Experimental setup was simple for this task due to the complexity of 
calculation

❖ Simple 2D navigation on a small, discrete grid.
❖ 𝐇 performs a trajectory while 𝐑 observes in the learning phase
❖ 𝐑 placed randomly on the grid and given control 
❖ The set of actions consists of only the cardinal directions and nop.
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Experiment One Results
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Experiment Two/Three Setup

❖ Both experiments use Maximum Entropy IRL to implement 𝐑’s policy.
❖ Experiment Two: Compare DBE vs Approximate Best Response

➢ Human agent can choose either best response or DBE
➢ Robot uses IRL to compute its estimate of theta during deployment
➢ Run with number of features = 3 and 10

❖ Experiment Three: Applying CIRL to Maximum Entropy IRL
➢ Exploits the free parameter 𝜆 which controls how optimal 𝐑 believes 𝐇 is acting.
➢ This experiment the effects of modifying 𝐑’s belief on 𝐇’s action
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Experimental Results
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Critique / Limitations / Open Issues 

❖ The main problem with CIRL is the complexity of the space

➢ This limits to simple experiments

❖ The complexity of the reduced coordination POMP is ambiguous

❖ The first experiment does not really make clear what is happening
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Future Work For Paper

❖ Formalize complexity space for CIRL as a coordinated POMP
➢ The ambiguity does not elicit faith in the paper’s findings

❖ Show CIRL or ACIRL can be used in realistic, complex domains rather than 
simple toy examples
➢ The framework and ideology behind this paper is important, but theory without practice is dead
➢ Malik, et al followed up with a modified Bellman update in service of CIRL, which shows 

promise

❖ More concrete, clear experimentation
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Extended Readings
❖ Supplementary and Review Material

➢ https://papers.nips.cc/

❖ Algorithms for Inverse Reinforcement Learning (Ng and Russell, 2000)
➢ https://ai.stanford.edu/~ang/papers/icml00-irl.pdf

❖ An Efficient, Generalized Bellman Update For Cooperative Inverse Reinforcement 
Learning (Malik, Palaniappan, Fisac, et al, 2018)
➢ https://arxiv.org/abs/1806.03820

❖ Apprenticeship learning via inverse reinforcement learning (Abbeel and Ng, 2004)
➢ https://ai.stanford.edu/~ang/papers/icml04-apprentice.pdf

❖ ELI5: Cooperatively Learning Human Values
➢ https://bair.berkeley.edu/blog/2017/08/17/cooperatively-learning-human-values/

❖ Podcast Interview with Dylan Hadfield-Menell
➢ https://futureoflife.org/2019/01/17/cooperative-inverse-reinforcement-learning-with-dylan-hadfield-men

ell/

https://papers.nips.cc/paper/2016/hash/c3395dd46c34fa7fd8d729d8cf88b7a8-Abstract.html
https://ai.stanford.edu/~ang/papers/icml00-irl.pdf
https://arxiv.org/abs/1806.03820
https://ai.stanford.edu/~ang/papers/icml04-apprentice.pdf
https://bair.berkeley.edu/blog/2017/08/17/cooperatively-learning-human-values/
https://futureoflife.org/2019/01/17/cooperative-inverse-reinforcement-learning-with-dylan-hadfield-menell/
https://futureoflife.org/2019/01/17/cooperative-inverse-reinforcement-learning-with-dylan-hadfield-menell/
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Summary

❖ Reward Engineering is difficult for a number of reasons
❖ This is difficult because humans have a hard time communicating what they 

want
❖ AI, in general, focuses on specific rewards without consideration of true goals
❖ Key takeaways

➢ CIRL provides a formalization of the value-alignment problem
➢ DBE is not the optimal policy for training a robot in IRL
➢ The regret metric gives us a way to compute the optimal human trajectory

❖ CIRL gives future research a framework for analyzing and working with the 
value-alignment problem.


